- Nucleation
 - homogeneous
 - heterogeneous
- Growth
 - planar
 - dendritic
- Casting
 - microstructure
 - defects
- Welding

Taking a close look at solidification...

• <u>Solidification</u> ⇒ freezing of metal

• <u>Nucleation</u> occurs when a small piece of solid forms from the liquid.

• $\Delta T = T_m$ -T is the amount of <u>undercooling</u>.

Why does a liquid become a solid?

(below the melting point the free energy of the solid is less than the liquid)

What factors affect nucleation?

(anything that makes r* smaller makes nucleation easier – see next slide)

Nucleation

$$r^* = \frac{2\sigma T_m}{\Delta H_f \Delta T}$$

where σ is the surface energy, T_m is the melting point in K, ΔT is undercooling in °C or K, and ΔH_f is the <u>latent heat of fusion</u>.

Which variable can we most easily control? (undercooling. Faster cooling rate, more undercooling)

Heterogeneous Nucleation

- Homogenous nucleation never occurs except in laboratory experiments because ΔT required for heterogeneous nucleation usually smaller.
- Heterogeneous nucleation
 - impurities provide a surface for solid to nucleate
 - intentional additions called <u>inoculants</u> encourage this and are used for <u>grain refinement</u>
- Glasses form when cooling rates are too high for nucleation to occur.

Growth

- Growth of the solid occurs as atoms from the liquid are attached to the solid.
- For growth to occur, the latent heat of fusion (ΔH_f) must be removed from the liquid.
 - Planar growth
 - Dendritic growth
- More inoculation, less undercooling required ⇒ more planar growth
- Otherwise you see dendritic growth

Dendritic microstructures

- Faster cooling ⇒ smaller <u>secondary dendrite arm</u> <u>spacing</u> (SDAS)
- Smaller SDAS ⇒ higher strength and improved ductility

Casting

- Molten metals are poured into molds and allowed to solidify
- <u>Superheat</u> is difference between T_m and pouring temperature
- <u>Ingot</u>: as-solidified shape that will undergo additional processing
- <u>Casting:</u> as-solidified component (an ingot is a casting)

Show sand casting process

Casting

• The <u>total</u> solidification time (t_s) for a casting can be described by <u>Chvorinov's rule</u>:

$$t_{s} = B \left(\frac{V}{A}\right)^{n}$$

- where V= casting volume, A is casting surface area and $n \approx 2$.
- B is the <u>mold constant</u> and depends on the pouring temperature and the mold properties.

Casting macrostructure

- As-solidified <u>macrostructure</u>
 - Chill zone heterogeneous nucleation of tiny grains at mold wall
 - Columnar zone elongated grains that grow perpendicular to mold wall
 - Equiaxed zone randomly oriented grains in casting center, last to cool and solidify.

Solidification Defects

• Shrinkage: as material solidifies, it will contract

Solidification Defects

- Shrinkage porosity shrinkage between dendrites
- <u>Gas porosity</u> solubility of gas in liquids are typically higher than solids. Gas is rejected as it solidifies and can get trapped as bubbles.

Welding

- Metals to be joined are melted and fused together with a <u>filler metal</u>.
- The melted and re-solidified material is, in a sense, a casting, and is called the <u>fusion zone</u>.
- Microstructure surrounding the fusion zone changed as a result of the weld is called the <u>heat-affected zone (HAZ).</u>
- Variables that affect the HAZ microstructure: metal <u>thickness</u> and \underline{T}_m , <u>heat input</u>, <u>cooling rate</u>.

Weld structures

Weld structures

